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Abstract
Symbolic links are widely utilized in file operations on the
Windows system to facilitate seamless interaction and en-
hance the overall user experience. However, developers’ fail-
ure to properly validate symbolic links during the process
of file operations has led to the Link Following Vulnerabili-
ties (LFVulns), enabling attackers to manipulate system files
arbitrarily.

In this paper, we conduct a comprehensive analysis of exist-
ing LFVulns and reproduce 42 of them for in-depth empirical
research. Our findings uncover the root causes of LFVulns and
identify key factors hindering their detection and exploitation.
To bridge this gap, we developed LinkZard, a prototype for
the automated detection and exploitation of LFVulns target-
ing Windows systems. LinkZard consists of two main phases.
The exploration phase employs efficient file state fuzzing to
better uncover potential vulnerabilities, while the exploitation
phase locates sinks and utilizes code wrapping strategies to
achieve automatic exploitation. We applied LinkZard to 120
commercial programs from vendors such as Microsoft, Apple,
and Intel, successfully detecting and exploiting 55 zero-day
vulnerabilities. We responsibly reported all identified vulner-
abilities to the affected vendors. Up to now, 49 of them have
been confirmed and patched, resulting in 15 CVE assignments
and bounty rewards.

1 Introduction

Symbolic links [1] are widely used in file operations on the
Windows system, significantly enhancing the user experience
by providing features such as desktop shortcuts [2] and direc-
tory junctions [3]. While offering conveniences, the misuse
of symbolic links also introduces significant security risks,
referred to as Link Following Vulnerabilities (LFVulns), en-
abling arbitrary file manipulation and leading to critical con-
sequences such as local privilege escalation (LPE) [4] and
denial of service (DoS) [5].

The root cause of LFVulns lies in the lack of proper valida-
tion for symbolic links during the process of file operations.

When files are controlled by a low-privileged attacker (e.g., a
regular user), they can be crafted into symbolic links pointing
to sensitive files. If a privileged program fails to validate the
files and follows the links, it may result in arbitrary manipula-
tion of sensitive files, thus resulting in LFVulns.

To the best of our knowledge, no prior work has focused on
the detection and exploitation of LFVulns. The most relevant
work, Jerry [6], identifies file-hijacking vulnerabilities caused
by weak file permission controls. While the root causes of file
hijacking vulnerabilities and LFVulns differ, their detection
similarities enable Jerry to detect a limited set of LFVulns.
However, it fails to thoroughly explore file operations and
relies only on a dangerous single-file operation, resulting in
a significant number of false negatives and false positives.
Additionally, it lacks the capability for automated LFVulns
exploitation.

Therefore, in this work, we are highly motivated to design
an automatic approach for detecting and exploiting LFVulns
in the Windows system. To gain a deeper understanding of
LFVulns, we conducted an empirical study to investigate the
underlying causes and exploits of existing LFVulns. Our find-
ings reveal that such automation is a non-trivial task, and the
following two challenges must be properly addressed.

• Challenge-1: How to solve file state constraints for ef-
fective detection of LFVulns? File state constraints are
specific file conditions that must be satisfied before deeper
file operations proceed. For example, in a log backup rou-
tine, a backup may only be triggered when the file size
exceeds a threshold, typically expressed as a condition
like if(file.size > BACKUP_SIZE). Such constraints
are common and serve as necessary preconditions for trig-
gering LFVulns. However, due to the diversity of file states
and the black-box nature of program functionalities, we
lack effective methods to accurately solve and infer whether
these constraints have been addressed.

• Challenge-2: How can we automate the exploitation of
LFVulns? Automated exploitation requires locating sinks
within complex file operations and applying suitable ex-
ploitation strategies. Here, we define a sink as a manually



defined sequence of high-risk file API operations that oper-
ate on the same file and collectively indicate an exploitable
condition. Even after the sink is successfully located, ex-
ploitation strategies for pre-sink (i.e., constraints before
the sink) and on-sink (i.e., constraints within the sink) con-
straints differ significantly.

In this paper, we propose a novel security analysis approach
for the automated detection and exploitation of LFVulns in the
Windows system, called LinkZard. Specifically, our approach
is inspired by several key insights. First, file operations are
often accompanied by file state queries, and these states are
highly concentrated, which allows us to solve potential state
constraints. Second, the sinks of LFVulns are composed of
an invocation sequence of file operation APIs, which forms
a method call graph. Besides, the entire program’s set of file
operations also constitutes a large graph. Therefore, locating
the sink within a complex program can be formulated as
a subgraph isomorphism problem. Based on these insights,
LinkZard implements automated detection and exploitation
of LFVulns through two key phases.

In the exploration phase, we implement a feedback-driven
file state fuzzing strategy to dynamically solve file state con-
straints. To infer whether the constraints have been solved,
we use a two-dimensional (i.e., operation count and opera-
tion types) analysis of file operations. Specifically, we obtain
specific file state (e.g., file name, size) query information to
guide the fuzzing process. Additionally, we have developed
three efficient mutation operators that target these file states
to effectively address these constraints. By comparing the
type and quantity of file operations before and after fuzzing,
we can infer whether the constraints have been solved, which
ensures thorough exploration of privileged programs and effi-
cient detection of LFVulns.

The exploitation phase consists of three processes. First,
we formalize the file operations from the exploration phase
into a File Operation Primitive Graph (FOPG), which com-
prehensively represents the invocation sequence between file
operations. Based on our second insight, we leverage a sub-
graph matching [7] algorithm to locate the sink, and then
categorize constraints as pre-sink or on-sink based on their
position relative to the sink. Finally, we apply two distinct
code-wrapping strategies to handle pre-sink and on-sink con-
straints. This approach’s effectiveness lies in its reliance on
constraint types rather than specific operations, making it
applicable to LFVulns across various scenarios.

To evaluate the effectiveness of LinkZard in detecting and
exploiting vulnerabilities, we constructed a benchmark com-
prising 42 known vulnerabilities. Our evaluation shows that
LinkZard successfully detected 38 known vulnerabilities,
outperforms the current state-of-the-art tool (i.e., Jerry [6])
with improvements of 29.41% in precision rate and 33.34% in
recall rate. For the automatic exploitation, LinkZard success-
fully exploited 33 of them, achieving a success rate of 86.84%
(33/38). Furthermore, we applied LinkZard to 120 programs

from well-known vendors, including Microsoft, Apple, Intel,
HP, and Tencent. We detected and successfully exploited 55
zero-day vulnerabilities in 49 of these programs. Considering
the widespread use of these programs and the significant se-
curity threats the vulnerabilities pose to their user base, we
responsibly reported all vulnerabilities to the vendors. To date,
these vulnerabilities have been assigned 15 CVE identifiers.
These evaluations confirm that LinkZard is highly effective
in automating the detection and exploitation of LFVulns in
real-world scenarios.

The contributions of this paper are summarized as follows:

• We introduce a threat model for LFVulns and, based on
this model, present the first systematic empirical study of
LFVulns, which reveals their root cause and key character-
istics. Additionally, we provide several novel insights into
the automated detection and exploitation of LFVulns.

• Building on these insights, we propose LinkZard, the first
prototype for the automated detection and exploitation of
LFVulns. LinkZard effectively solves file state constraints
without human intervention and wraps exploitation code to
achieve the successful exploitation of LFVulns.

• Our evaluation of 120 real-world popular programs shows
that LinkZard can automatically detect and successfully
exploit 55 zero-day vulnerabilities. All vulnerabilities were
reported to the vendors, with 49 confirmed or patched. To
date, 15 CVE IDs have been assigned.

2 Background & Problem Statement

2.1 Link Following Vulnerability
2.1.1 LFVuln Overview

Symbolic link [1] is a widely used mechanism in the Windows
system. Developers who work with symbolic link files can
follow the link and directly interact with the target file. This
flexibility and transparency feature significantly enhances
the functionality of the file system. However, due to insuf-
ficient checks on symbolic links, low-privileged attackers
can exploit carefully crafted malicious symbolic link files to
trick high-privileged programs into accessing and manipulat-
ing sensitive files, leading to Link Following Vulnerabilities
(LFVulns). While the immediate consequences of LFVulns
resemble those of path traversal vulnerabilities [8], such as
arbitrary file moves or deletions, their root causes differ fun-
damentally. The root cause of LFVulns is presented in §3.2.

Figure 1 illustrates the attack workflow of LFVulns. The
origin design intention by the developer was that the privi-
leged program could directly delete the target file through a
symbolic link file created by an administrator (green line).
However, an attacker may exploit this functionality to delete
arbitrary files without authentication (red line). Specifically, to
exploit this vulnerability, ① a low-privileged attacker creates
a symbolic link file that points to a protected file, which the
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Figure 1: An Overview of Normal Symbolic Link and Link
Following Vulnerabilities in File Deletion

attacker does not have permission to access. ② The privileged
program fails to perform proper validation on the file and
follows the symbolic link to operate on the target protected
file with elevated privileges. ③ As a result, the protected file
is unauthorizedly deleted, thereby compromising the confi-
dentiality, integrity, and availability of the system.

2.1.2 Threat Model

In our threat model, we assume that the attackers gain access
to the target system through means such as weak password
attacks or malware infections, obtaining a standard user ac-
count (low-privileged). With this level of access, the attackers
can interact with privileged applications through inter-process
communication (IPC) [9] to trigger file operations, and for
certain files, configure symbolic links to exploit vulnerabili-
ties. We classify the security risks caused by the LFVulns into
the following two categories.

• Denial of Service (DoS): Attackers can exploit LFVulns
to create files essential for system initialization and ker-
nel module loading, leading to Denial of Service. For ex-
ample, creating a file at C:\Windows\System32\cng.sys
can result in boot failures, ultimately rendering the system
unusable.

• Local Privilege Escalation (LPE): Attackers can exploit
LFVulns to delete sensitive files and even entire folders or
move arbitrary files (e.g., a malicious DLL), leading to Lo-
cal Privilege Escalation. For instance, an attacker can copy
a malicious DLL to C:\Windows\System32 directory to
achieve privilege escalation through DLL side-loading [10]
by exploiting LFVulns.

Notably, to better illustrate how arbitrary file deletion can
result in privilege escalation, we present a commonly ex-
ploited technique below. Windows systems include an auto-
matic rollback mechanism [11] in their installer framework to
restore the system to its original state upon installation failure.

During installation, a privileged installer service creates a
protected directory, i.e., C:\Config.msi, which stores a roll-
back script (.rbs) and a corresponding rollback file (.rbf).
One exploitation technique abuses LFVulns to cause a privi-
leged program to delete this directory. The attacker can then
recreate it and inject malicious .rbs and .rbf files. When the
rollback mechanism is triggered, the malicious scripts execute
with elevated privileges, resulting in privilege escalation.

2.2 LFVulns Exploitation on Windows

Attackers typically rely on two key mechanisms to exploit the
LFVulns in Windows file operations: Pseudo-Symbolic Links
and Opportunistic Locks.
Pseudo-Symbolic Links. Actually, creating a traditional sym-
bolic link in Windows requires administrator privileges [12].
Interestingly, attackers can leverage two mechanisms in Win-
dows to achieve the functionality of symbolic links without
needing administrator privileges. (1) Directory Junctions [3]
(aka. Mount Points) enable the linking of one directory to
another target directory and do not require administrator
privileges. This makes them accessible to attackers, who
can create directory junctions using the command mklink
/j <source> <target>, setting the source directory as a
mount point linked to the target directory. (2) Object Man-
ager Symbolic Links (ObjSymlinks) exist within the Object
Manager’s [13] namespaces and reference various system ob-
jects, such as devices, files, or directories. These namespaces,
functioning as special directories, can also be mounted using
directory junctions. For instance, the command mklink /j
<source> \RPC Control mounts source directory to the
RPC Control namespace. Notably, some namespaces (e.g.,
\RPC Control\) are writable by low-privileged users, allow-
ing attackers to create ObjSymlinks within these namespaces
that point to arbitrary files.

In general, to construct a pseudo-symbolic link, attackers
first leverage directory junctions to mount the directory path
of a vulnerable file into writable namespaces in the object
manager. They then create a symbolic link within these names-
paces that points to the target file.
Opportunistic Lock. An Opportunistic Lock (OpLock) [14]
temporarily blocks access to a file, granting exclusive con-
trol during specific operations. File operations in programs
often occur sequentially, and when certain conditions are re-
quired to trigger LFVulns, the lack of a mechanism to pause a
privileged program’s file operations might cause the pseudo-
symbolic link to be created after the vulnerable file operation
has been completed, leading to exploitation failure. In such
cases, the attacker must first meet the required condition, then
use Oplock to pause file operations, creating a stable time
window to configure the pseudo-symbolic link before the vul-
nerable operation occurs. Once the Oplock is released, the
exploitation is completed.

In summary, attackers can leverage two key Windows-



specific mechanisms to reliably construct pseudo-symbolic
links within the exclusive time window provided by Oplock,
enabling the exploitation of elevated program privileges to
access or manipulate sensitive files.

2.3 Real-World Example
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void Exploit() {

    HANDLE hFile = CreateFile(L"attack.tmp");

    Oplock oplock = new Oplock(hFile);

    // Use Oplock to create a time window

    oplock->SetOplock(Trigger_Callback, hFile);

    oplock->Release();

}

void Trigger_Callback(HANDLE hFile){

    wchar_t* dirPath = GetFileDir(hFile);

    wchar_t* symPath = L"\\RPC Control\\attack.tmp"

    CreateJunction(dirPath, L"\\RPC Control");

    CreateObjSymlink(symPath, victim_file);

}
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void IPC_CleanTempFile() {

    // Operates on an attacker-controlled directory

    wchar_t * dirPath = GetTempFilePath();

    sprintf(searchPath, L"%s\\*.tmp", dirPath);

    // Locate .tmp files in the specified directory

    hFind = FindFirstFile(searchPath, &fdata);

    do {

        wchar_t filePath[MAX_PATH];

        PathCombine(filePath, dirPath, fdata.cFileName);

        /** Remove located temporary files */

        DeleteFile(filePath);

    } while (FindNextFile(hFind, &fdata));

}

Attacker Exploit Code

Figure 2: CVE-2024-491**: Windows W** Service LFVuln
vulnerability and its exploitation code fragment

We use a real-world LFVuln we detected in a Windows
system service (i.e., W** service, anonymized for ethical
reasons) to better demonstrate the LFVuln. In Figure 2, we
present the simplified code (decompiled using IDA-Pro [15])
of the vulnerable privileged program alongside the exploit
code snippet. This vulnerability arises from the improper
deletion of files without strict access control by a privileged
program, allowing an attacker to exploit this flaw for arbitrary
file deletion and subsequent privilege escalation.

The red dashed arrow in Figure 2 represents the nor-
mal file operation path. The IPC_CleanTempFile func-

tion clears temporary files. Lines 2-4 locate the first .tmp
file in the temporary directory using GetTempFilePath
and FindFirstFile. The directory obtained through
GetTempFilePath (Line 2) is not protected by any access
control policy and thus can be controlled by attackers. Lines 5-
9 iterate through all matching .tmp files using FindNextFile
and delete them sequentially via DeleteFile (Line 8). Due
to the privileged program failing to validate symbolic links
for the files being deleted, this ultimately leads to an LFVuln.

The red solid arrows in Figure 2 represent the file oper-
ation path during the exploitation phase. The exploitation
code follows a multi-step process. First, in the exploit
function, Lines 2-4 create a .tmp file and set an Oplock
(Line 3) with a callback function TriggerCallback (Line
7). This ensures that the privileged program cannot delete
the file after identifying it until the Oplock is released, cre-
ating a stable time window for further operations. Second,
within TriggerCallback (Line 7), the path information is
constructed (Lines 8-9), followed by configuring a direc-
tory junction (Line 10) and an ObjSymlink (Line 11) to set
up the pseudo-symbolic link, linking the .tmp file path to
victimFile. Finally, the Oplock is released (Line 5), caus-
ing the privileged program to follow the pseudo-symbolic link
and erroneously delete victimFile.

Such vulnerabilities are prevalent in privileged programs,
as file operations are fundamental to almost all programs.
This example demonstrates that detecting and exploiting these
vulnerabilities can be relatively complex and challenging.

2.4 Existing Work and Limitations

To the best of our knowledge, Jerry [6] represents the most
closely related state-of-the-art work in this area. Specifically,
Jerry interacts with programs using randomized GUI actions
and command-line options, detecting file-hijacking vulnerabil-
ities by identifying weakly permissioned files in program op-
erations. It flags potential vulnerabilities when actions such as
creation, deletion, or even reading are performed on attacker-
controlled files lacking strict access control policies.

However, due to the differing root causes of the two vulner-
abilities, this approach exhibits limitations in the context of
LFVulns. First, Jerry does not comprehensively explore file
operations, resulting in a low recall rate (only 57.14% in our
dataset). This limitation arises from its exclusive focus on the
existence of files, thereby overlooking numerous other poten-
tial file states (e.g., file name) that can impact the program’s
file operation process. Second, Jerry’s detection strategy is
overly coarse-grained, reporting vulnerabilities based on one
single file operation (e.g., reporting a vulnerability whenever
the program reads an attacker-controlled file). This detection
strategy leads to numerous false positives and heavily relies
on expert knowledge for analysis, thereby requiring substan-
tial human effort. Finally, Jerry lacks support for exploiting
LFVulns. The complexity of exploitation steps means that



even after detecting vulnerabilities, significant expert effort
and time are required to achieve successful exploitation.

3 Empirical Study

In this section, we present the methodology and findings of
our empirical study on LFVulns. We begin by detailing the
process of LFVuln collection (in §3.1), followed by a compre-
hensive analysis of 145 LFVulns across multiple dimensions.
In summary, we analyzed and manually reproduced 42 vul-
nerabilities as part of our empirical study. This study aims to
address three critical questions, i.e., ❶ What is the root cause
of LFVulns (in §3.2), ❷ What are the types of dangerous file
operations (sinks) that lead to LFVulns? (in §3.3), and ❸ What
factors significantly hinder the detection and exploitation of
LFVulns? (in §3.4)

3.1 Vulnerability Collection and Analysis
To enable a comprehensive study of LFVulns, we collected
all recorded cases from the past five years through a cross-
referenced analysis of keyword-based identification and CWE
[16] mapping. Specifically, we performed systematic keyword
searches in the CVE database [17] using terms such as Link
Following, Privilege Escalation, and Symbolic. Concurrently,
we queried the NVD (National Vulnerability Database) [18]
for CWEs related to symbolic links, specifically CWE-{59-
64} [19–24], in order to collect CVE-identified vulnerabil-
ities associated with these weaknesses. The intersection of
CVEs identified through both methods served as the con-
firmed dataset of LFVulns. For the remaining results, we
manually examined vulnerability descriptions and associated
CWEs to ensure their relevance. This methodology yielded a
total of 408 LFVulns recorded.

Subsequently, focusing on LFVulns in Windows applica-
tions, we excluded vulnerabilities specific to Linux, Mac, and
Android, with 79, 46, and 2 vulnerabilities removed from each
platform, respectively. This filtering resulted in 281 vulnera-
bilities specific to the Windows platform.

Finally, we excluded vulnerabilities from the dataset for
which detailed exploitation information was unavailable.
Specifically, we first removed cases with no disclosed de-
tails or insufficient information to enable meaningful analysis.
Subsequently, we collected publicly available exploit code
from platforms such as GitHub [25], HackerOne [26], and
ExploitDB [27]. For vulnerabilities with sufficient details but
lacking published exploit code, manual reproduction was con-
ducted by three authors through a cross-validation process
to ensure accuracy and consistency. Ultimately, we curated a
dataset of 145 vulnerabilities for empirical study, successfully
reproducing 42 of them as ground truth (detailed in Table 5
in Appendix B) for further evaluation §5.2. The entire pro-
cess of dataset collection, analysis, and reproduction required
approximately two months to complete.

3.2 Root Causes

Finding 1: The root cause of LFVulns originates from the
inadequate validation of symbolic links during the process of
file operations.

In Windows file operations, symbolic links are widely uti-
lized to enable seamless interaction, enhancing the overall
user experience. However, as a feature of file operations in
Windows, following symbolic links is enabled by default—a
behavior that developers often overlook. Consequently, pro-
grams lack adequate validation of symbolic links during the
process of file operations. When files are under attacker con-
trol (e.g., files in C:\Windows\temp), this oversight allows
attackers to craft symbolic links and arbitrarily manipulate
system files. Furthermore, the diversity of file operations in
the Windows system complicates developers’ ability to ensure
adequate validation of symbolic links across all operations.
This results in a "weakest link" [28] effect in security, where
the absence of proper validation in any single functionality in-
volving file operations can lead to the emergence of LFVulns.

3.3 Sink Types

Finding 2: There are four distinct types of dangerous file
operations (sinks) leading to LFVulns, each of which can be
represented by specific sequences of file operation APIs.

The sinks are manually defined sequences of high-risk file
API operations targeting the same file, distilled from our study
to capture representative vulnerable file operations. These
APIs, part of the fundamental Windows APIs [29] provided
by Microsoft, encapsulate all file operations. Table 4 in Ap-
pendix A presents the API sequences for each sink. We detail
the four sink types below and use a real-world example to
illustrate an API sequence for a sink in our study.
1 Unsafe Creation, Write, and Overwriting (49, 33.8%). This
sink arises from the frequent use of file creation and write
operations in programs, leading to a higher prevalence of
LFVulns under this type. These vulnerabilities are often ex-
ploited to achieve arbitrary file creation and writing.
2 Unsafe Copying and Moving (14, 9.7%). When both the
source and destination files of copy or move operations are
attacker-controlled, LFVulns in this category can be leveraged
to achieve arbitrary file movements, including file deletion
and creation.
3 Unsafe Access Control Configuration (14, 9.7%). This sink
arises when privileged programs assign permissive ACL [30]
to files without verifying whether the file is a symbolic link.
Such unsafe access control configurations allow attackers to
redirect permissions to arbitrary files.
4 Unsafe Deletion (68, 46.8%). This sink is the most preva-
lent in our dataset, primarily due to two factors: first, programs
frequently create and delete temporary files as part of normal
operations; second, the inherent design of deletion processes
in Windows often involves following directory junctions, sig-



nificantly increasing the likelihood of LFVulns.
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Figure 3: The Sink of Unsafe Deletion in the Real-world
LFVuln

Figure 3 depicts a sink in the real-world LFVuln(§2.3).
The file operations performed by the privileged program are
implemented through a sequence of API calls (QueryDirec-
tory→ CreateFile→ DeleteFile). This sequence represents
the privileged program first performing a specific file state
query targeting the file directory. After completing the query,
it proceeds to delete these files. When the files are under the
control of an attacker, this results in an LFVuln, allowing the
attacker to achieve arbitrary file deletion.

3.4 File State Constraints

Finding 3: File state constraints are the most critical fac-
tor hindering both the automated detection and exploitation
of LFVulns. These constraints are widely distributed across
66 vulnerabilities, accounting for 46% (66/145) of the total
dataset analyzed.

File states represent the unique characteristics of a file, en-
compassing attributes such as file name, size, content, and
time-related properties (e.g., creation and modification times-
tamps). It is worth noting that we adopt the term state rather
than metadata, following its usage in recent research [31] [32],
[33], as it more accurately reflects the dynamic conditions of
files observed during runtime. These attributes collectively de-
fine the state of a file, influencing its behavior and interactions
during file operations.

Programs often require a set of specific file states to be
satisfied before performing deeper or more critical file opera-
tions. We define these prerequisite states, which may block
further file operations if unmet, as file state constraints. File
state constraints refer to conditions where the absence or mis-
match of specific file states causes the privileged program to
terminate or skip subsequent operations on the file. Our study
found that, among the 66 vulnerabilities, approximately 41%
are related to file name constraints, where the file name must
adhere to specific formats (e.g., UUID, timestamps) or exten-
sions (e.g., .log, .tmp). Around 21% of the vulnerabilities are
linked to file content constraints (e.g., Magic Number [34]).
Interestingly, we observed that certain antivirus software is
affected by these vulnerabilities. Such software typically runs
with elevated privileges and incorrectly deletes malicious files
during virus scanning, leading to LFVulns.

File state constraints can be classified into two categories
based on their presence at different positions relative to the
sink within the file operation sequence:
Pre-sink constraints (12/66, 18.2%). Pre-sink constraints re-
fer to all file state constraints that exist before a privileged
program’s file operation triggers the sink. These constraints
present a significant barrier to the detection of LFVulns. When
pre-sink constraints remain unsolved, further exploration of
privileged program file operations becomes infeasible. As a
result, potential sinks in deeper file operations are not trig-
gered, leading to missed vulnerabilities. Moreover, for pre-
sink constraints, once the attacker solves the constraint, they
can create a pseudo-symbolic link at any point before the sink
is triggered, enabling successful exploitation.
On-sink constraints (54/66, 81.8%). Unlike pre-sink con-
straints, on-sink constraints refer to file state constraints
present within the dangerous API sequences (sinks) of a priv-
ileged program’s file operation. This type of constraint signif-
icantly interferes with the automated exploitation of LFVulns.
In contrast to pre-sink constraints, as the constraints reside
within the dangerous API sequences (sinks), their solution
prompts the privileged program to proceed with the subse-
quent API calls. As a result, the attacker must race against the
program, competing for the time window between constraint
resolution and the program’s execution of the subsequent op-
eration to create the pseudo-symbolic link. However, in all the
ground truth vulnerabilities, we found that for LFVulns with
on-sink constraints, the Oplock is consistently used as a sta-
ble exploitation method. However, automating Oplock-based
exploitation remains a significant challenge.

4 The Methodology of LinkZard

In this section, we first summarize the challenges we encoun-
tered and our key insights (in §4.1.1) and present our proposed
solutions (in §4.1.2). We then thoroughly elaborate on the
two main phases in LinkZard: the exploration phase (in §4.2)
and the exploitation phase (in §4.3).

4.1 Overview
4.1.1 Challenges and Insights

Given the severe security threats posed by LFVulns, our ob-
jective is to develop an effective approach for detecting and
exploiting potential LFVulns. To achieve this goal, we face
two straightforward key challenges:

• Challenge 1: How to solve file state constraints for effec-
tive detection of LFVulns? As indicated in §3.4, 46% of
the vulnerabilities exhibit file state constraints, highlighting
that efficiently detecting LFVulns necessitates addressing
these constraints inherent in program file operations. To
the best of our knowledge, no existing work effectively ad-
dresses file state constraints in LFVulns. Although dynamic
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Figure 4: LinkZard Architecture: Workflow Overview for Link Following Vulnerabilities

and static constraint-solving techniques offer valuable in-
sights, significant challenges remain. On one hand, the com-
plexity of application functionalities poses substantial dif-
ficulties for static approaches such as static analysis and
symbolic execution, which are prone to well-documented
issues like path explosion [35] and code obfuscation [36].
On the other hand, advanced dynamic fuzzing tools for file
inputs lack feedback mechanisms and mutation strategies
tailored to file states. For instance, tools like AFLSmart [37]
and Peach Fuzz [38] primarily focus on byte-level or struc-
tural mutations, making them ineffective for resolving the
file state constraints inherent in LFVulns. Furthermore, our
research indicates that current solutions for addressing file
state constraints heavily rely on manual implementation.

• Challenge 2: How can we automate the exploitation
of LFVulns? The complexity of application functionality
leads to long sequences of file operations. The challenge
of automating exploitation lies in two main aspects: first,
we are unable to pinpoint the exact position within the file
operation sequence where the attacker’s series of actions
should be performed. Traversing all positions and file oper-
ations results in an exponential increase in the complexity
of the exploitation process. Second, even if the correct po-
sition is identified, for pre-sink constraints, we can create a
pseudo-symbolic link and solve the constraint to complete
the exploitation. However, for on-sink constraints, there is
a lack of prior knowledge on how to solve the constraints
while simultaneously using an Oplock to stabilize the ex-
ploitation. As shown in §2.3, this LFVuln exhibits on-sink
constraints. Successful exploitation requires resolving the
state constraints before the FindFirstFile, while setting an
Oplock and performing various exploitation-related file op-
erations, such as creating a pseudo-symbolic link.

Insights. For the two challenges outlined above, our insights
are distinct yet effective in addressing each one.

First, as described in Challenge 1, accurate feedback and
efficient mutation operators are two crucial components in
fuzzing file states. Our key observation is that file operations
are typically accompanied by specific state queries, which
often correspond to file states imposing constraints. These

state constraints are primarily concentrated on attributes such
as file name format, content, size, and time. This concentration
allows us to focus on a subset of critical file states rather
than the entire state space. By applying targeted mutation
operators to these states, we can leverage the information
obtained from state queries as feedback to guide and prioritize
the mutation process. This feedback-driven approach not only
improves the efficiency of addressing file state constraints
but also ensures that the fuzzing process remains scalable for
complex programs with diverse file operations.

Second, as outlined in Challenge 2, the sink represents a
shorter invocation sequence of file operation API calls, cap-
turing the essential steps of a vulnerable operation. This se-
quence can be formed into a method call graph, while the
entire set of file operations constitutes a large graph. This size
disparity suggests that the task of locating the sink within the
file operations can be transformed into a subgraph isomor-
phism problem. The key insight here is that by recognizing
this structural difference, we can apply graph-matching tech-
niques to locate the sink. Building on this insight, we lever-
age the principles used to solve the subgraph isomorphism
problem [7] to address this challenge, enabling efficient and
accurate sink location.

4.1.2 Solutions

Following the insights, we propose LinkZard, the first proto-
type for the automated detection and exploitation of LFVulns.
As shown in Figure 4, it consists of two main phases: explo-
ration and exploitation phase.
Solution for Challenge 1: Exploration Phase. In this phase,
we first interact with privileged programs through IPC Call.
Guided by Finding 2 and our insights, to detect LFVulns
efficiently, we designed a feedback-driven file state fuzz, al-
gorithm 1 outlines the overall process of file state fuzz. The
fuzzing leverages API hooking for state queries to obtain spe-
cific types of state query information, including all file states
mentioned in §3.4. This feedback effectively guides the selec-
tion of file states for mutation. We employ three distinct and
efficient mutation strategies to target concentrated file state
constraints. Following this, we perform a two-dimensional



analysis of file operations to infer whether the state constraints
have been resolved. LinkZard transitions from exploration to
exploitation upon inferring that the file state constraints have
been solved during fuzzing. It is important to note that during
the file state fuzzing phase, our focus is not on distinguishing
between pre-sink or on-sink constraints, but rather on deter-
mining whether the constraints have been successfully solved.
Ultimately, we get a complete set of file operations performed
by the privileged program.
Solution for Challenge 2: Exploitation Phase. In light of
our insights, the exploitation phase consists of three key pro-
cesses. In the first process, all file operations of privileged
programs are structured into a File Operation Primitive Graph
(FOPG), a directed graph that captures the file operations and
their sequential relationships. Next, in the second process, we
perform graph matching to identify the portion of the FOPG
that matches the API sequence of the sink. Upon locating the
sink, this indicates the detection of an LFVuln. Subsequently,
we traverse the graph to determine whether the constraint is
pre-sink or on-sink, which is crucial for exploitation. In the
third process, we perform state-specific code wrapping. The
wrapping process involves the following steps: (1) Extract
the exploitation fragment’s state-specific dependency infor-
mation from the sink and constraint files, including file state
(e.g., file name and path) and sink type (e.g., Unsafe Deletion).
(2) For both types of constraints, we apply distinct wrapping
strategies to assemble the exploitation code, which is then
compiled and executed to achieve the exploitation of LFVulns.
Notably, this approach depends on the constraint type rather
than the file operation itself, making it applicable to LFVulns
across various operational scenarios. After each exploitation,
if successful, it results in output; otherwise, the privileged
program’s file operations are updated, and the process returns
to the exploration phase.

4.2 Exploration Phase

4.2.1 IPC Call

To achieve direct and efficient interaction with privileged pro-
grams, we leverage IPC (Inter-Process Communication) [9]
to establish direct communication. Specifically, we utilize
two parallel channels by analyzing typical communication
mechanisms, i.e., Service Management [39] and RPC (Re-
mote Procedure Call) [40], to explore interaction methods
with privileged programs. When the input executable file is
registered as a service program, we establish an effective
communication channel with the privileged program by issu-
ing control commands (e.g., start, stop, restart) to the target
service via the Service Manager, as these commands often
trigger extensive file operations within the privileged pro-
gram. In parallel, we systematically analyze the RPC inter-
faces exposed by the input program, synthesize RPC stubs
by inferring parameter types from IDL metadata [41], and

adapt the majority of parameter types, with random parameter
values generated during each interface invocation. We adopt
a bottom-up and intuitive approach for handling complex
nested interface parameters (e.g., nested structures). Specif-
ically, we begin by recursively identifying and constructing
sub-structures whose members are primitive types rather than
other structures. These sub-structures are then iteratively in-
tegrated into their parent structures, continuing this process
until the entire nested structure of the interface parameter
is fully constructed. For unknown parameter types, we use
NULL as a placeholder to ensure successful invocation. By
combining these two approaches, we achieve efficient and
direct interaction with privileged programs, thereby allowing
the triggering of file operations by the privileged programs.

4.2.2 File State Fuzz

We designed comprehensive feedback and mutation strategies
to effectively fuzz file states, and then leveraged the two-
dimensional analysis of file operations to infer and solve file
state constraints, as illustrated in algorithm 1.

Algorithm 1: File State Fuzz Workflow
Input: Initial set of privileged file operations Oi
Output: Expanded set of file operations Oo

1 Initialization: F ← ExtractFiles(Oi);
2 while True do
3 Oo← /0;
4 foreach f ∈ F do
5 S f ← Feedback(Oi, f );
6 F ′←Mutate( f ,S f );
7 F ← F ∪F ′;
8 foreach f ′ ∈ F do
9 O ′← GetOperations( f ′);

10 if InferResolvedConstraints(Oi,O ′) then
11 Mark( f ′);
12 Oi← Oi∪O ′;
13 break;

14 Oo← Oi;
15 return Oo

For feedback, the large number of user-level APIs related
to file state queries and their layered encapsulation would re-
quire extensive modeling. To avoid such large-scale modeling,
we adopt a more robust approach by leveraging kernel-level
hook techniques to monitor two primary state queries: File
State Queries [42] and Directory State Queries [43], which
together constitute the complete set of file state queries. The
former encompasses nearly all file state queries, including
file names, sizes, time attributes, and permissions. The latter
represents the entire set of directory state queries, such as
enumerating specific files within a directory. Specifically, we



hook into a total of 12 state queries, distributed across the
two primary types described above, which together cover 28
distinct file states, with each query mapping to one or more
of these file states. The details are outlined in Table 6 in
Appendix C. Upon encountering a file state constraint, the
program issues a corresponding file state query, which our
instrumentation intercepts and observes. This enables us to
leverage the observed file state queries as feedback to drive
targeted mutations of the mapped file states, thereby signifi-
cantly reducing the mutation state space and effectively solv-
ing the file state constraints. The design eliminates the need
for elaborate modeling and optimizes feedback utilization to
effectively guide the mutation process.

For mutation, we implemented three distinct mutation op-
erators to efficiently solve file state constraints:
(1) Z3-based Constant Value Injection: For state informa-
tion involving pattern matching or fuzzy queries, we use
Z3 [44] to solve for constant values and inject them into
the corresponding states. For instance, when wildcard file
names are present, Z3 solves the wildcard to generate specific
constants, which are then used for mutations.
(2) Similarity-based Mutation: When state information
exhibits similarities, we calculate similarity using edit dis-
tance [45] and iteratively alter different components to gen-
erate new states. For example, if file name queries include
.log.1 and .log.2, we calculate their edit distance and mu-
tate to create similar file names, such as .log.3 and .log.0.
(3) Flip-based Mutation: Inspired by traditional fuzzing tech-
niques, we implement random flips on file states. This opera-
tor randomly flips attributes to generate new file states. For in-
stance, a file can be flipped to a directory, or a non-compressed
file can be flipped to a compressed one.

For inferring whether constraints have been solved, con-
sidering the black-box nature of programs, which prevents
directly determining if constraints are resolved, we infer
whether file state constraints have been solved after muta-
tion by analyzing two dimensions of file operations: (1) Op-
eration count. Checking if the number of operations on the
mutated file increases. (2) Operation types. Verifying if the
types of operations increase. However, relying on a single
dimension, like operation count, is insufficient, as an increase
(e.g., additional read operations due to a larger file size) may
not indicate constraints. By contrast, when both dimensions
exhibit increases, it can be inferred that state constraints have
been successfully resolved. Subsequently, files that success-
fully resolve state constraints are marked, and the process is
terminated to transition into the exploitation phase.

4.3 Exploitation Phase

4.3.1 File Operation Primitive Graph Build

In this process, LinkZard constructs the File Operation Prim-
itive Graph (FOPG) to systematically represent the relation-

ships between all file operations performed by the privileged
program. We first introduce the FOPG along with formal
definitions of its nodes and edges, followed by a detailed
description of the FOPG construction process.
Definition 1 (FOPG). The File Operation Primitive Graph
(FOPG) is a directed graph that uses specialized nodes and
edges to represent the file operations of privileged programs
and their sequences. Each path obtained through the traver-
sal of the FOPG reflects a complete and sequential set of
operations performed by the program on a target file and its
dependent files (e.g., parent directories).
Definition 2 (FOPG Node). In the FOPG, each node rep-
resents a distinct file operation performed by the privileged
program. A node is formalized as a tuple:

N = ⟨Os,Od ,Op,R⟩, (1)

where Os denotes the operation subject; notably, if the pro-
gram executes the file operation under an impersonated user
context [46], the operation subject is defined as the imper-
sonated user. Od represents the target file of the operation,
Op specifies the type of operation performed (e.g., write, re-
name), and R indicates the operation’s return value, reflecting
its outcome (e.g., success or a system-defined error code [47]).
Definition 3 (FOPG Edge). An FOPG edge e ∈ E repre-
sents a directed connection between two nodes, capturing the
sequential relationship between file operations. This sequen-
tiality inherently determines the directionality of edges, which
plays a critical role in sink localization and subsequent code
wrapping during the exploitation phase.

We construct the FOPG based on the comprehensive se-
quences of file operations performed by privileged processes
during the exploration phase. In this graph, each file opera-
tion is formalized as a node, and directed edges are added
to reflect the sequential execution of operations. In partic-
ular, operations targeting the parent and sibling directories
of a node’s file are incorporated as its predecessors, as inter-
directory dependencies are technically essential for the cre-
ation of pseudo-symbolic links during exploitation. This con-
sideration is explicitly integrated into the construction of the
FOPG. Meanwhile, pruning strategies are employed to en-
hance efficiency and focus on essential paths. Specifically,
operations targeting strictly protected paths are excluded, and
repeated operations on the same file are removed to eliminate
redundancy, retaining only the critical operations.

4.3.2 Sink and Constraint Location

In this process, we focus on locating the sinks and identifying
the associated constraints within the FOPG. By drawing on
the principles used to solve the subgraph isomorphism prob-
lem [7], we implement a graph matching approach to identify
a corresponding subgraph within the FOPG that matches the
sink, which also means LinkZard detects an LFVulns vulner-



ability. Subsequently, we perform graph traversal to determine
whether the file state constraints are pre-sink or on-sink.
Sink Location. Given the FOPG Gop = (Nop,Eop), where
Nop represents the nodes of the FOPG and Eop represents
the edges between these nodes, we aim to locate a subgraph
Gsink = (Nsink,Esink) that corresponds to the sink. Thus, we
attempt to map each node in the sink’s subgraph to a node in
the FOPG.

f : Nsink→ Nop (2)
∀(vi,v j) ∈ Esink, ( f (vi), f (v j)) ∈ Eop. (3)

Equation 3 illustrates the core process. Specifically, the node
mapping ensures that two nodes correspond to the same API
operation, while the edge mapping guarantees that the se-
quence of operations is consistent.

The sinks introduced in §3.3 are formalized into sink graphs
following the same procedure described in §4.3.1, and are
subsequently treated as subgraphs for matching within the
FOPG. We first begin by performing a depth-first traversal
of the FOPG to explore all possible file operation sequences.
Subsequently, for each visited node, we attempt to map the
first node of the sink to it in the FOPG. If the mapping is suc-
cessful, we then verify whether the successor nodes and their
corresponding edges in the sink can be mapped to their coun-
terparts in the FOPG. If any mismatch occurs, we backtrack
to the previous node and attempt a different mapping. This
process continues until a valid mapping for the entire sink
is found, thereby accurately locating the sink in the FOPG.
Notably, we observe that enforcing strict subgraph matching
can lead to elevated false negatives in vulnerability detection.
This is primarily due to the presence of extraneous file opera-
tions interleaved within the execution of the sink operation in
privileged programs. To address this, we refine our mapping
strategy: once a sink node is successfully matched to a node
in the FOPG, its successor nodes are flexibly matched against
multiple successor nodes of the corresponding FOPG node.
This relaxation mitigates the risk of false negatives caused by
intervening irrelevant operations and improves the robustness
of sink localization.
Constraint Location. In this process, we perform graph
traversal within the FOPG to identify the constraints asso-
ciated with the sink. Specifically, we recursively explore all
the incoming edges to the sink, identifying the set of all pre-
decessor nodes N and their incoming edges. The goal is to
determine whether any of these predecessor nodes N has an
operation target Od that corresponds to a file with an existing
state constraint, i.e., a file that has been previously marked as
f ′ in Exploration Phase. If such a node is found, it indicates
the presence of a pre-sink constraint. For on-sink constraints,
we check each node N within the sink. If the operation target
Od of any node corresponds to a file with an existing state
constraint, it indicates the presence of an on-sink constraint.
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in LFVulns Exploitation by LinkZard

4.3.3 State-Specific Code Wrapping

This process is responsible for wrapping state-specific code
to achieve the final exploitation of LFVulns. As mentioned in
§4.1.2, the effectiveness of this assembly method lies in its
focus on constraint types rather than specific file operations,
making it applicable to LFVulns across different scenarios.
Broadly, this is a two-step process: (1) extracting file state
information from the located sink and associated constraints,
and (2) applying distinct wrapping strategies for pre-sink and
on-sink constraints to fully assemble the exploitation code.

Specifically, for the first step, since the exploitation code
for pseudo-symbolic links and opportunistic locks is highly
dependent on specific states (e.g., file name, path), we extract
the state information from the sink and the files with existing
constraints. This includes file names and file paths. The ex-
tracted state information for the former primarily serves to
wrap the Oplock exploitation code, while the state informa-
tion for the latter is used for wrapping the pseudo-symbolic
link exploitation code. In the second step, we elaborate on the
wrapping strategies for pre-sink and on-sink constraints and
how the extracted state information is mapped to the exploita-
tion code, ultimately assembling the complete exploitation
code for compilation.

1 For pre-sink constraints, our wrapping strategy involves
first assembling the code to generate a file that satisfies the



state constraints, primarily by replicating the same file marked
during the exploration phase. Next, we use the target file’s
name and path from the sink operation to assemble the pseudo-
symbolic link exploitation code. 1) The code to create a direc-
tory junction is assembled by using the extracted path to cre-
ate the junction, pointing to a writable namespace (e.g., \RPC
Control). 2) The code to create an ObjSymlink is assembled
by using the extracted file name to create the symbolic link,
pointing to the victim file. Figure 5a illustrates the code wrap-
ping steps performed by LinkZard for the exploitation with
pre-sink constraints in FoxitPDF.

2 For on-sink constraints, our wrapping strategy first in-
volves assembling the code to generate a file that satisfies the
state constraints. Next, we combine this extracted file name
and path to set the Oplock and use the state of the sink op-
eration’s target file to create a pseudo-symbolic link. This
includes: 1) assembling the code snippet to implement the
Oplock for the constrained file, ensuring that the privileged
program temporarily halts and resumes once the Oplock is
released to complete the subsequent file operations in the
sink; and 2) assembling the pseudo-symbolic link exploita-
tion code, similar to the pre-sink strategy, using the state of
the sink operation’s target file. Figure 5a demonstrates the
detailed code wrapping steps performed by LinkZard for the
exploitation with on-sink constraints in the W** service.

5 Evaluation

5.1 Experimental Setup
Experiments. Our evaluation aims to answer the following
research questions:

• RQ1: How does LinkZard compare to state-of-the-art tools,
i.e., Jerry [6], in terms of its vulnerability detection capabil-
ities for known LFVulns? (in §5.2)

• RQ2: How effective is LinkZard in detecting and exploit-
ing unknown LFVulns in real-world programs? (in §5.3)

• RQ3: How do the key processes of LinkZard contribute to
its performance in detecting and exploiting Link Following
vulnerabilities? (in §5.4)

Implementation. We implemented LinkZard on Windows,
consisting of approximately 5.6k lines of C code and 2.8k
lines of Python code. The C code, developed using the Mi-
crosoft Windows Driver Kit (WDK) [48], captures privileged
file operations and provides detailed feedback on file state in-
formation. The Python code utilizes this information to carry
out the exploration and exploitation phases. All experiments
were conducted on a VMware virtual machine hosted on an
HP laptop running Windows 11. The host system is equipped
with a 13th Gen Intel Core i7-13700 processor, 32 GB of
RAM, and a 1 TB SSD. The virtual machine is configured
with 4 CPU cores, 16 GB of memory, and a 100 GB virtual
hard drive, also running Windows 11.

Table 1: Comparison between LinkZard and Jerry-Ext in
Known Vulnerability Dataset (RQ1)

Baselines Detection Exploitation

TP FP FN Prec (%) Recall (%) Success Rate (%)

Jerry-Ext 24 10 18 70.59% 57.14% /
LinkZard 38 0 4 100.00% 90.48% 86.84% (33/38)

Dataset. We evaluate LinkZard using two datasets: ① Known
Vulnerability Dataset: This dataset consists of the 42 success-
fully reproduced LFVulns described in our empirical study.
Table 5 shows the details of the dataset. ② Unknown Vul-
nerability Dataset: This dataset includes 120 highly popular
programs and system-critical foundational service programs,
with all popular programs having over 50K downloads from
Chocolatey [49]. Notably, all selected programs run with ele-
vated privileges, either directly as system services or by rely-
ing on privileged components for critical functionality. These
programs span a broad spectrum, encompassing widely-used
user applications to low-level drivers and hardware-based ser-
vice programs, highlighting the dataset’s comprehensiveness
in ensuring representation across all layers of the software
stack.
Time Setup. We assign a 20-minute time budget for testing
each program, during which LinkZard automatically alter-
nates between two phases. Specifically, it transitions from the
exploration phase to the exploitation phase upon solving file
state constraints. If the exploitation attempt fails, LinkZard
updates file states and resumes exploration.

5.2 Comparison on Known Vulnerabilities
In this section, we evaluate the effectiveness of LinkZard
by conducting a comparative analysis against state-of-the-art
techniques (i.e., Jerry [6]) using the Known Vulnerability
Dataset.
Baseline Setup: Jerry-Ext. We adapted and enhanced Jerry,
as it was not originally designed for privileged programs and
thus cannot effectively interact with them. To ensure a fair
comparison, we extend Jerry by integrating the IPC Call com-
ponent, resulting in Jerry-Ext. This extension ensures com-
patibility with all programs within the Known Vulnerability
Dataset, providing comprehensive coverage and improved
applicability.
Result Overview. In terms of detection, LinkZard signif-
icantly outperforms Jerry-Ext, successfully detecting 38
vulnerabilities out of 42, identifying 14 more vulnerabilities
than Jerry-Ext. Additionally, LinkZard achieves precision
and recall rates of 100.00% and 90.48%, respectively. It is
worth noting that the high precision of LinkZard stems from
our use of sinks, i.e., API file operation sequences, rather than
individual file operations, to detect LFVulns. In contrast, the
precision and recall rates of Jerry-Ext are notably lower,



with values of 70.59% and 57.14%. Furthermore, LinkZard
maintains a high exploitation success rate of 86.84%, whereas
Jerry-Ext, due to its inability to perform exploitation, has
no data available in this regard.

As shown in Table 5 in Appendix B, we provide a detailed
breakdown of the performance of LinkZard and Jerry-Ext
on the known vulnerability dataset. While all vulnerabilities
detected by Jerry-Ext are also identified by LinkZard, the
latter additionally identifies 14 more vulnerabilities, highlight-
ing its superior detection capability. Furthermore, LinkZard
successfully exploits 33 of these vulnerabilities, demonstrat-
ing its effectiveness not only in detection but also in exploita-
tion. These results underscore LinkZard’s high efficiency
and robustness in addressing known vulnerabilities, making
it valuable for both detection and exploitation tasks.

False Negative Analysis. We conducted a comprehensive
analysis of all false negatives. For the 4 false negatives by
LinkZard, the underlying cause lies in the need to satisfy
non-file-state external constraints to trigger the vulnerabil-
ities. For instance, CVE-2020-0668 [50], a local privilege
escalation vulnerability in Windows Service Tracing, necessi-
tates prior modification of registry values to exploit the issue.
Due to the high variability of such external constraints, it
becomes impractical for LinkZard to accommodate them.
In addition to these 4 cases, Jerry-Ext exhibited 14 addi-
tional false negatives. This limitation stems from its inability
to address file-state constraints. An illustrative example is
CVE-2023-45253 [51], where the file size must exceed the
maxSizeRollBackups threshold to trigger an unsafe file move,
a constraint that Jerry-Ext cannot address.

False Positive Analysis. Jerry-Ext has 10 false positives,
primarily due to its reliance on single-file operations to deter-
mine the presence of vulnerabilities. Notably, all of these false
positives occurred when privileged programs performed se-
cure file read operations, which Jerry-Ext mistakenly iden-
tified as vulnerabilities. In contrast, LinkZard leverages sink
for vulnerability detection as previously mentioned in §4.3.2,
a method that significantly improves precision, as evidenced
by its markedly higher accuracy in the experimental results.

Exploitation Result Analysis. For exploitation, LinkZard
achieves a success rate of 86.84% (33/38) for known vulnera-
bilities. Considering the complexity of privileged program file
operations and the challenges of exploiting LFVulns, we be-
lieve this is a significant result. This is particularly impressive
given that our exploitation approach focuses on constraint-
based exploitation code wrapping rather than individual file
operations, making it applicable to LFVulns across various
file operation scenarios. Additionally, we analyzed the five
failures in exploitation within the detected LFVulns and found
that successful exploitation required meeting additional pre-
conditions. For example, CVE-2024-21111 [52] requires a
tricky technique to first clear the folder, which LinkZard is
unable to achieve.

5.3 RQ2: Identifying Unknown Vulnerabilities
To evaluate LinkZard’s capability in identifying unknown
vulnerabilities, we applied LinkZard to the Unknown Vulner-
ability Dataset, which consists of 120 untested programs.
Result Overview. Table 2 presents the real-world vulnerabili-
ties detected and exploited by LinkZard. Overall, LinkZard
successfully identified and exploited 55 zero-day vulnerabili-
ties across 49 programs, with only 5 false positives.
False Positive Analysis. Our analysis of the 5 false positives
revealed that 3 of them were caused by the implementation
of process-level mitigations in the application, specifically
through the use of Redirection Guard [53], which protects
against LFVulns by preventing unauthorized redirections dur-
ing file operations. These mitigations allowed LinkZard to
detect the vulnerabilities as potential threats, but the exploita-
tion attempts failed due to the protective mechanisms in place.
The remaining 2 false positives stemmed from custom de-
fenses added to file operations by the application, which
specifically check whether a file is in the form of a symbolic
link, thereby partially mitigating the vulnerability.
Vulnerability Disclosure. Among the 49 confirmed and fixed
vulnerabilities, 15 have been assigned CVE identifiers, while
25 were acknowledged with bug bounty rewards. Notably,
a portion of these zero-day vulnerabilities was discovered
in high-impact programs with over 5 million downloads,
including Tencent Meeting, Enterprise WeChat, Foxit PDF,
and Adobe C***. Additionally, some zero-day vulnerabili-
ties were identified in critical infrastructure and foundational
services with widespread impact, such as default Windows
system services (e.g., Windows Image Acquisition) and Intel’s
driver-level services (e.g., Intel(R) *** Service). Furthermore,
we observed that software developed by prominent vendors,
including Microsoft, Apple, Intel, JetBrains, VMware, and
Tencent, also exhibited a significant number of LFVulns. We
responsibly reported all vulnerabilities to the vendors and
maintained continuous communication to ensure that all vul-
nerabilities with detailed information received the vendors’
approval for disclosure.

5.4 RQ3: Ablation Studies
In our ablation study, we systematically evaluated the impact
of incrementally removing key processes of LinkZard on
false positives and false negatives. Specifically, we created
two variants by isolating each process from LinkZard, and
the details of these variants are outlined as follows:

• LinkZardNF (No Fuzz): In this variant, we disable only the
File State Fuzz process while keeping the other processes
intact. The aim is to assess the impact of this process on
the vulnerability detection capabilities of LinkZard, with a
particular focus on its influence on the false negative rate.

• LinkZardNS (No Sink): In this variant, we isolate sinks
and to ensure the usability of LinkZard, we adopt Jerry’s



Table 2: Part of Real-world LFVulns Detected and Ex-
ploited by LinkZard in the Unknown Vulnerability
Dataset. (RQ2) The abbreviations Dos and LPE in the Sec.
Risk column represents Denial of Service and Local Privilege
Escalation, respectively. The symbol “★” indicates Critical
Infrastructure and Foundational Services. Note that these en-
tries do not include specific download metrics.

# Software Name Vendor Download Sec. Risk Status

1 WeCom Tencent 250M Dos Fixed

2 Tencent Meeting Tencent 200M Dos Fixed

3 WeChat Input Tencent 20M Dos Fixed

4 Foxit PDF Foxit Software 9.8M LPE CVE-2024-38***

5 Foxit PDF Foxit Software 9.8M Dos Fixed

6 Adobe *** Software Adobe 7.6M Dos Confirmed

7 W*** Software Elastic 3.2M LPE Confirmed

8 Microsoft PC Manager Microsoft 3.1M LPE CVE-2024-49***

9 Microsoft *** Microsoft 3.1M Dos Confirmed

10 iTunes for Windows Apple 2.7M LPE CVE-2024-44***

11 H*** Software Elastic 2.5M LPE Confirmed

12 Microsoft OfficePlus Microsoft 2.4M LPE CVE-2024-38***

13 H*** Software Elastic 2.4M LPE Confirmed

14 M*** Software Elastic 1.7M LPE Confirmed

15 Azure Software 1 Microsoft 1.7M LPE CVE-2024-38***

16 Azure Software 2 Microsoft 1.7M LPE Fixed

17 F*** Software Elastic 1.5M LPE Confirmed

18 V*** Software Veeam 1.3M LPE Confirmed

19 Sonos Controller S2 Sonos 1.3M Dos Confirmed

20 O*** Software ManageEngine 1.0M LPE CVE-2024-98**

21 E*** Software 1 ManageEngine 1.0M LPE Fixed

22 E*** Software 2 ManageEngine 1.0M LPE Fixed

23 A*** Software ManageEngine 1.0M LPE Fixed

24 P*** Software Trend Micro 635K LPE Reported

25 T*** Software Trend Micro 594K Dos Reported

26 MalwareBytes Adwcleaner MalwareBytes 521K LPE Confirmed

27 TeamCity JetBrains 483K LPE CVE-2024-43***

28 Cato SDP Client Cato Networks 425K LPE Reported

29 Warp VPN Cloudflare 366K LPE Fixed

30 A*** Software Avast 325K LPE CVE-2024-72**

31 P*** Software PaperCut 324K Dos Confirmed

32 Synology BeeDriver Synology 209K Dos CVE-2024-11***

33 Adobe *** Adobe 203K LPE Confirmed

34 Amazon Kinesis Agent Amazon 201K LPE Fixed

35 HP *** Hub HP 198K Dos Confirmed

36 Comodo *** Comodo 165K Dos Reported

37 S*** Software SonicWALL 157K Dos Reported

38 TOTAL SECURITY G DATA 150K Dos Fixed

39 T*** G DATA 150K LPE Reported

40 A*** Software Elastic 148K LPE Confirmed

41 W*** Software Wacom 123K Dos Confirmed

42 Splashtop Business Access Splashtop 108K Dos Fixed

43 R*** Software Rockwell 100K LPE Confirmed

44 Azure Monitor Agent Microsoft 67K Dos CVE-2024-38***

45 WatchGuard EPDR WatchGuard 50K Dos CVE-2025-01**

46 Windows WiaRPC Service Microsoft ★ LPE CVE-2024-38***

47 Windows WmsRepair Service Microsoft ★ LPE CVE-2024-49***

48 *** Device Realtek ★ Dos CVE-2024-11***

49 Intel *** Center Intel ★ Dos Confirmed

50 *** Device Realtek ★ LPE Fixed

51 Windows FSRM Microsoft ★ Dos Fixed

52 Windows Backup Service Microsoft ★ Dos Fixed

53 Windows *** Manager Microsoft ★ Dos Confirmed

54 Windows *** Manager Microsoft ★ LPE Confirmed

55 VMware *** Client VMware ★ LPE Confirmed

detection strategy by using single-file operations as the sink
while keeping the others unchanged. The purpose of this
modification is to evaluate the impact of the sink on the
accuracy of vulnerability detection.

Table 3: Ablation Study (RQ3) on Two Variants of LinkZard
in the Known Vulnerability Dataset

Baselines TP FP FN Prec (%) Recall (%)

LinkZardNF 19 0 23 100.00 45.24
LinkZardNS 38 10 4 79.17 90.48
LinkZard 38 0 4 100.00 90.48

We conducted experiments on the Known Vulnerabilities
Dataset using two variants. Table 3 provides detailed re-
sults on the vulnerability detection capabilities of the two
LinkZard variants. LinkZardNF exhibits 23 false negatives,
resulting in a recall rate of only 45.25%, highlighting the
critical role of the File State Fuzz process in vulnerability
discovery. Simultaneously, LinkZardNS experiences a sub-
stantial increase in false positives, with precision dropping
by approximately 79.17%, highlighting the importance of the
sinks in ensuring detection accuracy. Through this ablation
study, we validate that the different processes of LinkZard
play a crucial role in maintaining the effectiveness of vulnera-
bility detection.

6 Case Studies

In this section, we showcase two LFVulns to demonstrate
LinkZard’s effectiveness: one identified in a highly popular
application and another uncovered within the foundational
infrastructure of prominent commercial software.
Case A: Microsoft OfficePlus (Downloaded by Over 2.4M
Users). Microsoft OfficePlus [54] is a commercial subscrip-
tion application introduced within the Office. The application
registers a privileged service named OfficePlusService.
When interacted via IPC, the service queries the size of
the MSOfficePLUSService.log file located in the program
directory (C:\ProgramData\Microsoft OfficePLUS). If
the file size exceeds a specified threshold, the service
creates a new file, MSOfficePLUSService1.log, and ap-
pends subsequent content to it. This process continues un-
til MSOfficePLUSService10.log is created, after which it
deletes the original MSOfficePLUSService.log. The dele-
tion operation contains a sink, which is detected by LinkZard
as an LFVuln. Using LinkZard’s file state mutators, specif-
ically targeting file size and name similarity, the file opera-
tions were successfully explored. Through code wrapping,
LinkZard successfully exploits this LFVuln to achieve arbi-
trary file deletion, ultimately enabling local privilege esca-
lation. Given the significant potential impact of this vulner-
ability, we promptly reported it to MSRC [55]. As a result,



the issue was assigned a CVE (CVE-2024-38***) and was
rewarded with a vulnerability bounty.
Case B: Commercial Software infrastructure Infrastruc-
ture M*** (anonymized for ethical reasons), a leading IT
operations management software provider, is reported to
support over 60% of Fortune 500 companies in manag-
ing IT infrastructure, data centers, business systems, and
security. During our analysis, we identified a vulnerabil-
ity in a widely used WAF-related infrastructure compo-
nent integrated across multiple M*** commercial applica-
tions. Specifically, the vulnerability resides in the directory
C:\Windows\Temp\waf_fileupload, where the infrastruc-
ture periodically checks for JSP files containing malicious
content and performs insecure deletion if such files are de-
tected. Using LinkZard, we leveraged directory query feed-
back to perform file state fuzzing, successfully triggering the
vulnerability and enabling local privilege escalation. Upon
reporting the issue to the vendor, we learned that over 10
internal commercial applications reused this vulnerable in-
frastructure, amplifying the severity of the threat. In response,
the vendor promptly patched the vulnerability. This vulner-
ability was assigned CVE-2024-9***, and we received an
official acknowledgment from the vendor.

7 Discussion and Limitations

Adaptability. Our prototype for detecting and exploiting
LFVulns was specifically designed for privileged programs
within the Windows system. The primary motivation for this
choice lies in the fact that Windows possesses the largest user
base among desktop operating systems [56] and exhibits the
most complex mechanisms for file operations and symbolic
links. Since LFVulns arise from the lack of proper valida-
tion for symbolic links by developers, such vulnerabilities are
prevalent across all system platforms that support symbolic
links, including Unix-like [57] systems (Linux and Mac). The
core ideas of LinkZard can be extended to other operating
systems with a simpler implementation than on Windows.
Mitigation. Currently, there are two main mitigation ap-
proaches for LFVulns: (1) Redirection Guard [53], introduced
by Microsoft in Windows, mitigates LFVulns at the process
level by preventing privileged programs from following inse-
cure symbolic links. However, this measure is only applicable
to Windows 11 22H2 and later, making it incompatible with
applications that prioritize version compatibility. (2) Strict
Access Control [58], the most commonly used mitigation ap-
proach due to its simplicity. Developers should enforce strict
access control policies on directories and files involved in
LFVulns to prevent arbitrary file manipulation by attackers.
Limitations. Our implementation of feedback-driven fuzzing
focuses exclusively on file states, as we observed that file
state constraints are the primary obstacle to exploring file
operations. However, an analysis of FN (in §5.2) revealed
that environment variables and registry values can also im-

pact exploration. Despite this, we did not include fuzzing for
these factors due to the disproportionate cost-to-benefit ratio,
making their exclusion an acceptable trade-off for LinkZard.

8 Related Work

File-related Vulnerability Detection. A significant body of
research has focused on detecting vulnerabilities related to file
access control [6, 59–65], broadly categorized into static and
dynamic approaches. In static detection techniques, [59] [60]
leverage static program analysis and access control policy
analysis to identify file system vulnerabilities. Shaikh et
al. [63] proposed a decision tree-based anomaly detection
algorithm to identify inconsistencies in access control poli-
cies. Dynamic detection methods [6] [65], employ monitors
to track file system events during a software’s lifecycle, iden-
tifying file operations targeting weakly permissioned files.
However, in the context of LFVulns, these approaches do not
address the challenges posed by file state constraints in vul-
nerability detection and exploitation, limiting the applicability
of both static and dynamic methods for the effective detection
and exploitation of LFVulns.
Windows-related Vulnerability. In recent years, extensive
research has focused on the detection and exploitation of vul-
nerabilities in Windows systems [66–72]. Choi et al. [69, 70]
combined empirical studies of Windows API fuzzing with
automated analysis of function dependencies to implement au-
tomated API fuzzing techniques. [71] [67] conducted fuzzing
on Windows applications to detect vulnerabilities, including
buffer overflows and denial-of-service attacks. For exploita-
tion, Jung et al. [71] utilized CPU-level operating system
instrumentation to exploit race condition vulnerabilities in the
Windows kernel, while Gu et al. [72] analyzed thread-unsafe
interfaces in COM objects to exploit data race vulnerabili-
ties. Despite these advancements, limited attention has been
given to the security challenges arising from dynamic file op-
erations. This gap strongly motivates our work on revealing,
detecting, and exploiting LFVulns in the Windows system.

9 Conclusion

This paper presents the first systematic study of LFVulns.
Inspired by findings from empirical research, we developed
LinkZard, the first framework for automatically detecting
and exploiting Link Following vulnerabilities in Windows file
operations. To date, LinkZard has identified and successfully
exploited 55 zero-day vulnerabilities across 120 real-world
applications. We responsibly disclosed all vulnerabilities to
the respective vendors, resulting in 49 confirmed and fixed
cases, with 15 CVE identifiers assigned and bug bounties
rewarded. We believe LinkZard could provide actionable
guidance for the prevention and remediation of LFVulns.
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Table 4: File Operation API Sequences in Four Sink Types

Sink Types API Sequences

Unsafe Creation, Write,
and Overwriting

• Sequence 1: CreateFile(OpenResult: Created)
• Sequence 2: CreateFile(Disposition: Opened) → WriteFile
• Sequence 3: CreateFile(Disposition: OverwriteIf) → WriteFile
• Sequence 4: CreateFile(Disposition: Opened) → QueryBasicInformationFile →
CreateFile(OpenResult: Created)

Unsafe Coping and
Moving

• Sequence 1: CreateFile(Desired Access: DELETE) → QueryBasicInformationFile
→ SetRenameInformationFile

• Sequence 2: CreateFile[source file] → QueryBasicInformationFile →
CreateFile[target file] → SetBasicInformationFile

Unsafe Access Control
Configuration

• Sequence 1: CreateFile(Desired Access: Write DAC) → QuerySecurityFile →
SetSecurityFile

• Sequence 2: CreateFile(Desired Access: Read Control) → QuerySecurityFile →
CreateFile(Desired Access: Write DAC) → SetSecurityFile

Unsafe Deletion

• Sequence 1: CreateFile(Desired Access: DELETE) → DeleteFile
• Sequence 2: QueryDirectory → CreateFile(Desired Access: DELETE) →
DeleteFile

A Sink Details

Table 4 presents the file operation API sequences correspond-
ing to different types of sinks identified in the ground truth.



Table 5: The Detailed Evaluation Results on Known Vulnerabilities.

# CVE ID Affected Software Sink Type Detection Exploitation (LinkZard)
Jerry-Ext LinkZard

1 CVE-2024-8405 PaperCut NG/MF FC ✓ ✓ ✓
2 CVE-2024-7235 AVG AntiVirus Free FC – ✓ ✓
3 CVE-2024-7234 AVG AntiVirus Free FD – ✓ ✓
4 CVE-2024-7232 Avast Free Antivirus FD – ✓ ✓
5 CVE-2024-7231 Avast Cleanup Premium FD – ✓ ✓
6 CVE-2024-7228 Avast Free Antivirus FC – ✓ ✓
7 CVE-2024-45316 SonicWall Connect Tunnel FD ✓ ✓ ✓
8 CVE-2024-45315 SonicWall Connect Tunnel FC ✓ ✓ ✓
9 CVE-2024-35204 Veritas System Recovery FC ✓ ✓ ✓
10 CVE-2024-3037 PaperCut NG/MF FD ✓ ✓ ✓
11 CVE-2024-28916 Xbox Gaming Service FM ✓ ✓ –
12 CVE-2024-27460 Poly Plantronics Hub FD ✓ ✓ ✓
13 CVE-2024-21111 VirtualBox FD – ✓ –
14 CVE-2024-20656 Visual Studio ACC – ✓ –
15 CVE-2023-50915 GOG Galaxy FC ✓ ✓ ✓
16 CVE-2023-50917 Intel Driver & Support Assistant FC ✓ ✓ ✓
17 CVE-2023-42099 Intel Driver & Support Assistant FD – ✓ ✓
18 CVE-2023-36874 Windows Error Reporting Service FD – ✓ ✓
19 CVE-2023-35342 Windows Image Acquisition Service ACC ✓ ✓ ✓
20 CVE-2023-32470 Dell Digital Delivery FC ✓ ✓ ✓
21 CVE-2023-29343 SysInternals Sysmon for Windows FD – – –
22 CVE-2023-28892 Malwarebytes FD ✓ ✓ ✓
23 CVE-2023-28869 NCP Secure Enterprise Client FC ✓ ✓ ✓
24 CVE-2023-28868 NCP Secure Enterprise Client FD ✓ ✓ ✓
25 CVE-2023-21752 Windows Backup Service FD – ✓ ✓
26 CVE-2023-20178 Cisco AnyConnect Secure Mobility Client FD – – –
27 CVE-2022-45697 Razer Central FD – ✓ ✓
28 CVE-2022-43293 Wacom Driver FC ✓ ✓ ✓
29 CVE-2022-38699 Armoury Crate FC ✓ ✓ ✓
30 CVE-2022-38604 Wacom Driver FD ✓ ✓ ✓
31 CVE-2022-32450 AnyDesk FC – – –
32 CVE-2022-28225 Yandex Browser FM ✓ ✓ ✓
33 CVE-2022-22718 Windows Print Spooler Service FC ✓ ✓ ✓
34 CVE-2022-22262 ROG Live Service FD ✓ ✓ ✓
35 CVE-2022-21999 Windows Print Spooler Service FC ✓ ✓ ✓
36 CVE-2021-25261 Yandex Browser FM ✓ ✓ ✓
37 CVE-2020-9682 Adobe Creative Cloud FC ✓ ✓ ✓
38 CVE-2020-15401 IOBit Malware Fighter Pro FD – ✓ ✓
39 CVE-2020-14990 IOBit Advanced SystemCare FD – ✓ ✓
40 CVE-2020-0668 Windows Service Tracing FM – – –
41 CVE-2019-19248 Electronic Arts Origin ACC – ✓ ✓
42 CVE-2019-13382 SnagIT FM ✓ ✓ ✓

B The Detailed Evaluation Results on Known
Vulnerabilities (RQ2)

Table 5 break down the evaluation result of RQ2. The abbre-
viations FC, FM, FD, and ACC represent Unsafe Creation,
Write, and Overwriting, Unsafe Moving and Copying, Unsafe
Deletion, and Unsafe Access Control Configuration, respec-
tively.



Table 6: Mapping of File State Queries to Corresponding File States

Class File States Class File States

FileNameInformation
File Name

FileBasicInformation

Creation Time

Modification Time

Access Time

Last Write Time

Is Hidden File

Is Archive File

Is Temporary File

File Content

File Name Length

FileDirectoryInformation

Is File

Is Directory

The Directory Size

FileEndOfFileInformation File Size

FileReparsePointInformation

Is Symlink

Is Mount Point

Is Appexeclink

FileHardLinkInformation Hard Link File

FileCompressionInformation
Compressed File Size

FileSecurityInformation
File DACL

Compressed File Format File Owner and Group

FileStreamInformation
Alternate Data Stream

FileStandardInformation
Number of Links

Data Stream Name Data Stream Attributes

FileAlternateNameInformation Short File Name FileAlignmentInformation File Alignment

C Feedback Metrics

Table 6 provides a detailed mapping between file state queries
used as feedback and their corresponding file states.
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